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RECURSIVE DERIVATION OF REFLECTION COEFFICIENTS
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ABSTRACT

We consider plane-wave motion at normal inci-
dence in a horizontally layered system. The sys-
tem is assumed lossless, and only the compres-
sionalwavesaretreated. A procedureisintroduced
for determining the reflection coefficients of the
layered system when the observed seismic data
may contain random noise. No decoavolutionof the
measured seismic data is required by the proce-
dure when the input is a narrow wavelet.

1. INTRODUCTION

In receat years much attention has been givento
the problem of determining reflection coefficients
for a layered media from the observed seismic_
data[1-4]. Ia line with the customary assumptions
and restrictions, we also limit our attention to a
horizontally stratified nonabsorptive earth with
vertically traveling plane compressional waves.
Such a system is completely described by a set of
reflection coeifficients and travel times within lay-
ers.

A fundamental procedure described in detail in
the above references for deriving values of the re-
flection coefficients can be summarized by the fol-
lowing agsumptions and steps.

Standard Assumptions:

(Al) The input wavelet is assumed known.

(A2) The data is assumed noise free.

(A3) The layered system is assumed to have uni-
form travel times between layers where a number
of the layers are hypothetical, i. e., they may not
correspond to an actual interface of the substruc-
ture and are associated with zero reflection and
unity transmission coefficients.

Standard Steps:

(S1) The observed seismic data is decoavolved us-
ing the input waveform to produce the system re-
spoanse to a unit spike iaput.

(S2) The aumber of layers is chosen high enoughto
result in travel times short compared with the in-
verse of the bandwidth of the observed seismic
data,

(S3) The deconvelved data is sampled with samp-
ling interval equal to the chosen one-way travel
time between lavers.

(S4) The system structure is used to arrive at a
set of aormal equations (linear simultaneous equa-
ticas) in terms of reflection coeificients and the

* .
Cf course the deconvolution may be performed in
discrete time using the same sampling interval.
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discretized and deconvolved observed data.

(S5) The normal equations of the preceding step
have the Toeplitz structure which makes it possible
to utilize the very eificient Levinson algorithm to
recursively solve for the reflection coefficients.

In this paper the method of solutionto the inverse
problem stated above is fundamentally modified to
cope with the existence of the noise in the measure-
ment data, often without need for any deconvolution.
More specifically, although again a uniformlayered
system is assumed, the choice of number of layers
can now be made independent of the sampling rate
requirement of the data (step(S2)above) often re-
sulting in the need for far fewer layers. No decon-
volution is necessary (step(Sl)) for wavelets of dur-
ation of the order of twice the layer travel times.
The exact deconvolution of step(Sl)is either not
possible in practice or, at the least, will furtherag-
gravate the harmful effects of the noise in the ob-
servation[5]. Furthermore, the deconvolution is a
time consuming operation. Finally, the procedureis
very simple to derive and does not need the con-
cepts of z-transforms, minimum phase, forward aad
backward polynomials, spectral factorization, etc.
The results reduce to the existing solution of the in-
verse problem in the absence of noise and with a
spike input signal (wavelet) [1].

2. STATEMENT OF THE PROBLEM

We are considering a uniform K layered system
and normal incident compressional waves. Figurel
represents such a system where d,(t) is the down-
going wave at the bottom of the jt® layer and u,(t) is
the up-going wave at the top of the layer. The re-
flection, downward transmission and upward trans-
mission coefficients associated with the interfaceat
the bottom of j** layer are denoted r, t, and t| re-
spectively where t,=1+r,,t{=1-r,. The one way trav-
el time between layers is denoted by r.

The input to the systemn, dq(t), is assumed known
(the wavelet) and the output may be either u,(t) (ia
the marine environment) or uy(t)e The measured
seismic data, y(t), consists of the outputandanaddi-
tive noise component n(t)., The source of this noise
may be the instrument measurement noise, the un-
certainty in the knowledge of the input wavelet or
response to unwanted inputs (ambient noise). It is
desired to process y(t),t20 and derive values for
the reflection coeificients r,,j=1,...,K (ry may be
agsumed known in cases such as the marine eavi-
roament),

3. STATE EQUATIONS

Using the notation of Fig.l,for a general jtt layer

a9
Sl




we have [6, 7].
a,(tr) = tju,, (8 +1,d,(t) (1)
d,,(t+7) =-ra,, () +t,d,(t) . (2)

These equations are valid for j=1,...,K-1. The
They should be augmented at the surface with

Uy(t) = tu,(t) + rody(t) (3)

dy(t+e) = =rqu,(t) +tedy(t) (4)
and at the basement with

ug(t+7) = tyuy, (t) + rede(t) = redy(t) (5)

deay(t) = =1 g, (8) +tedy(t) = ted,(t) o (6)

Equations (3, 4) and (5, 6) can be derived from (1) and
(2) [letting j=0,1,...,K]by noting that uy(t) is taken
at the bottom of layer 0 and d,,,(t) represents the
down-going wave leaving the last interface and is
oot reflected by any other interface; hence u,, (t) =0.
These equations, called causal functional, are not
difference equations since t is the continuous time
variable [6].

Using the state equations given above, it can be

shown[Appen. B, 9] that the function d,,, satisfies
the equation

de,,[tHK v] +a,d, [tHK-2)rl+ - - - +a,_dq,, [t-(K-2) 7]

K
+roT dg, [t-Kr] = Tt dg(t) (7

Note that the coefficient of the highest term of the
leit hand side is unity and that of the lowest term is
rory. The precise form of the other coefficients is
not important. Only the structural form of (7) will
be utilized ia the sequel. In this equation, the un-
knowns are the reflections coefficients which are
embedded in the coeificients a,, ..., a,.,, ror, and

:.t,. The input dy{t) is assumed known. Equation(7)

is the starting point for our inverse procedure;
however, it is in terms of a signal which, in general,
is not measurable. In the following two sections we
relate d,,,_(t) to measured seismic data. We do this
so that we will be able to extract the reflection co-
efficients from measured data.

4. A GENERALIZED ENERGY TRANSFER
(KUNETZ) RELATICN

Consider ¢ to be a non-negative continuous or
discrete variable withdimensionoftime. Equations
(1)and (2) where j=0,1,...,K are multiplied by
u,(t+++¢) and d,,,(t+rt+c) respectively resulting in

ua,(tte)u(ttrte) = th,, (Huy, (t+e)+rid,(t)d (t+e)
+r,tiu,, ()d (t+e) +u,, (t+e)d,(t)] (8)

dy(trr)d,, (thrte) = rfu, (Du,, (tHe)+tid, (t)d (t+e)
- rytyfu,, (t)d (tre)+ay, (tre)d ()] . (9)

Multiplying (8) by t,/t} and adding the resulting ex-
pression to (9) yields

dy(the)d , (tHrte) HE/t)u (t+r)u,(t+rte)
= (t,/td (6)d (t+e)tu,  (thu,, (t+e) . (10)
Let us define the following correlation-type
functions

Dy(e) & *®d,(t)d (t+e)dt (11)
Va® .

o+
U,(e) = f .u,(t)u:(t+c)dt. (12)

-®
Integrating both sides of Eq.(10) from - to +=,and
using Eqs.(11)and(12), we find that

D,,\(e)-U, () = t,/t{[D,()-U,(&)] (13)

where j=0,1,2,...,K. This is a generalization of
the well-known [1] energy transfer (Kunetz) relation.
Note that in ourderivation,iaputd,(t) is not assumed
to be an impulse and the seismic data is not dis-
cretized.

Iterating (13), starting with j=¢ and ending with
j=K, we obtain

Dy.(e) = 24[D, ()-U, (o] (14)

where ¢ cantake on the values 0o£0,1,..., or K,
L3

n&lt and ﬂ'éﬁt{. In the marine case this rela-
[ ]

tionship is used with £=1. In the non-marine case

it is used with £=0.
5. APPLICATION TO MARINE ENVIRONMENT

In this section we will direct our attention to the
marine case and shall express D,  (¢) in terms of
measured signals. To do this, we set r,=1 and we
see from (14) that we must express D (¢)-U,(¢) in
terms of the measured signals. The iirst layercan
be depicted as in Fig. 2. Observe that(4) becomes

d,(t+r) = ~u,(t)+2d,(t). (15)

From (11, 12, 13), we can evaluate the difference™
term D,(¢€)-U(e), ‘

+o
Dy(e)-Uy(e) £ P(e) = [ "([2dg(t)-u (t)]

o [2dg(t+e)-u,(t+e)]-uy(t)u,(t+e) 1dt (16)
or
P(e) = [T 4dy(t)dy(t+)dt- T = 2d(t)u (e+ c)ait
- [F% 20,004, (t+ at (1n

hence, P(¢) can be evaluated from a knowledge of
d,y(t) and u,(t) for any desired ¢. Observe,also,
that(14) with £=1 can be written in terms of P(¢),
using (16), as

Deay(e) = 2 Ple). (18)

We should point out at this stage that the quan-
tity u,(t) needed in(17) is only available throughthe
observation

y(t) =uy(t) +na(t) (19)

where n(t) is the additive noise. Consequently,P(¢)
is not physically available; however, we can define
P(¢) by replacing y(t) for u,(t) in(17),

Blo) = [*7 4dy(t1d,(t+e)dt - T2 2d, (1) y(e+e)dt

- T2y dy(t4e)at (20)

'Because of the range of integration in(11), we can
also express D(c) as D,(¢) = [ 7d,(t+r)d,(t+r+c)dt,

3
‘

We use this form of(11) in our development of
D,(e)=-Uyle).




which can also be written as

Ple) =P(e) +N(o), (21
where

N(e) = - j‘_*: zdo(:)n(ne)d:-j‘_*: 2n(t)dy(t+e)dt.  (22)

The statistics of noise term N(c) can be determined
in terms of those of n(t). Using Ble) in(18) yields

Dlo\_(ﬁ) = 'rI!I-I’ F(C) (23)

where P(c) is a known quaatity. Equation(23)is a
fundamental relationship which will be used in the
derivation of the inverse procedure.

6. DERIVATION OF THE NORMAL EQUA TIONS

Equation(7) is the main relation which will be
used to derive the reflection coefficients. Dividing

X
both sides by [It, and ideatifying the resulting coef-
ficients by g,,..., 5. we get
2de, [t+KT]+8,d,, [t+(K=-2) 7] ++ 0o
+ BBeat-(K-2)7]+g,d,, [t-Kr] =dg(t) . (24)
We compute the coefficients of this equation by
means of the following ''least squares'' criterion:
+
mia 7 { e [t+K ]+« o + 8dy,[t-K 7]
53-.--, = -da(t)]adto (25)
The result of this minimization is equivalent to
multiplying both sides of(7) by d,, ,[t+(K-2i)r] and in-
tegrating from -eto = for i=0,1,...,K. By either

approach, we obtain K+1 simultaneous equations,
which, using (11), become

[_Dtox(o) Dlol(zf) il D‘.\(ZK'_') rl-’ K o

‘I D'“(ZT) D’“(o). i ] \'al =thx - 71

I . . . s l . S

[Du2%n) - . . * Do) _J,_r._, e
(26)

where we have substituted t,=1+r,=2 to represent
the marine eaviroament and

aan = [Ty (0d,, (4K p-2im)dt, 120,1,2,...,K .
3 (27)
Substituting for Dy¢,y(€) from (23), we find that
(26) reduces to

-
Bo)y B(2e) «-- B2Kq)|| 1 o
P2y POy ess e a,

. . .
. .

K |a;
=20ef) o . (29)
.' e " p(.o) Ty L. I3%

LF( Zk )

Note that the (K+1) x (K+1) matrix on the left has the
Toeplitz structure. The terms N(0), N(27),...
which appear in P(0), P(2+),..., are random vari-
ables with known statistics; they will be zeroifthe
seismic data is noise free(i.e., n(t)=0). Observe,
also that the first and last elements of the vector
on the left-hand side of(28) are unity and r,, re-
spectively, by virtue of the property which we
stated for the d,,, causal functional equation.

Equation (28) provides the second point in our
procedure for ideatifying the raflectioncoefficients.

Note that in general the o, are functions of d,,.(t),a
signal which is not determinable; however, we will
show in the following section that when the input
wavelet is narrow enough (not necessarily a spike),
(28) has a unique solution for the reflection coeifi-
cients in terms of observable data,

7. SPECIAL CASE OF NARROW WAVELET

Let us now consider the case where dy(t) does not
extend* beyond 27,i.e.,

dy(t) =0 t<0, t>2r. (29)

Since the time of arrival at the K* interface is K+
and the time of arrival of the first reflections is
(K+2)r,

dyylt) 0

t<Kr (30a)

L ¢
= ch,d,(t-K?) Kr<ts(K+2)r (30b)

=more complicated terms t>(K+2)r. (30c¢)
From (27, 30a, 30b, and 29) we see that

a2y

K
m:“Ff:dc(t)d,ﬂ(tﬂ(-r)dt: 2llt, [“TaZbat, (31)
Q

and that

tan = [ Td(00d,, [t+Kr-20r)dE =0 i=1,...,K. (32)

Note now that(28) will have precisely K+1 unkuowns,
K of them in the vector multiplying the Toeplitzma-
trix and one on the right-hand side, e

Finally, Normal Equation(28) can be written in a
compact matrix form, as

Fra=g (33)

where B, is a (K+1) x (K+1) Toeplitz matrix with the
first row being' [P(0), P(2+),..., B(2K™)]; acisa
K+1 column vector with first and last elements 1
and r,, respectively; and, ¢;=col(8,,0,0,...,0) and

s _, & 2r
5.-2(1;1(143).% di(t)dt.

The Normal Equation(33) can be solved for 3y. This
only produces one of the K reflection coefficients,
namely r,. We will show, in the following,thatinthe
case of the marine environment, nested within (33)
are a set of normal equations, the solutions of which
produce each one of the reflection coefficients. The
absence of this useful property in the non-marine
case renders the procedure of this paper inapplic-
able in that case.

Let us now hypothesize a j-layer system (i.e.,
the basemnent layer is the j**) consisting of the top
j-layers of the above K-layer system (K 2 j).Clear-
ly, from (33), we have

PI a, =g, (34)

If this condition is not satisfied, we canalwaysde-
convolve the data to achieve this. Since the re-
quirement here is not to deconvolve down to an
impulse function (only (29) has to be satisfied), this
results in a more practical solution.

'For 2 narrow wavelet and ¢ 2 2, the calculation of
Ble) simplifies since (20) reduces to

27
Ple)=-2[ do(tiy(trerde.




where a, will again have 1 and r, as first and last
elements. We shall now show that, in the case of
the marine environment, B, isa (j+1) x (j+1) Toeplitz
matrix composed of the top left corner of B;i.e.,
its first row is given by [P(0), P(2r),..., B(2j)].

For the moment let us ignore the additive noise
term in(20). Let us dengte by uj(t) the response of
the j-layer system(i.e., the term u,(t) in Fig. 2 is
replaced by ui(t). In(17),due to the fact that dy(t)=0
for t> 27, the last value of u.(t) contributing to P(g)
is u,(27r+¢). In determination of P, with elements

(€), €=0,...,2jr, for a j-layered system,therefore
the last value of ui(t) contributing to B, is ui[2(j+1)+].
On the other hand, u,(t) is the response of the K-
layer system, and

u,(t) = ui(t) 0sts2(j+l)r (35)

since the first return from the interfaces below the
j** will not aEpear earlier than t=2(j+1)s. Hence,the
elements of »» Which are functions of ui(t) and R,
which are functions of u,(t),are ideatical when(35)
ig satistied. In other words, the numerical values
ot B(0),..., B(2j~) will be identical to those of the
K-layer system for all j s K. Furthermore, the ad-
ditive noise term in(21) is independent ot the num-
ber of layers, as is evident from (22).

The set of normal equations given by (34), for j=
l,...,K, can now be solved for the vectors a;,and
hence, their last elements, r,, j=l,...,K. The ma-
trix P, is Toeplitz and consequently, the Levinson
algorithm[1] can be used to solve for the vectors
a,j=1,...,K recursively.

Since the r/'s are reflection coeificients, for the
solution to this problem to be acceptable, each r
must be less than unity ia magnitude. Itis shownin
[9] that any solution of (34) with 3, >0 for all j yields
a set of r,'s which satisfy this condition. More-
over if B is positive definite, a compatible solu-
tion with 8, > 0 is guaranteed, We see therefore,
that the requirement that |r,|<1 has nothing to do
with a specific method of solution of the normal
equations (i.e., the Leviason procedure). This re-
sult is different from the comparable result in[1-
3], where one is left with the impression that a
specific method of solution leads to !rJ |<l.

8. EXPERIMENTAL RESULTS

A seven layer systemn was chosen with the fol-
lowing reflection coefficients: r,=1;r,=0,1; r =
0.15; ry=-0. 3; r =0, 25; r =0.12; r,=0.05; r,=0. 2.
We used a one-way layer travel time and data
sampling rate of 20 msec and 2msec, respectively,

The input wavelet was chosen as depicted in
Figure 3. Note that this is a non-minimum phase
function. It was specifically chosea as such to in-
dicate that the method introduced in this paper is
not limited to minimum phase wavelets., Figure 4
is the syathetic seismogram response of the sys-
tem. Figure 5 is obtained by adding white Gauss-
ian noise with variance 1 to the sampled seismo-
gram. Similar results were obtained for vari-
ances 0of 0.1 and 10, These responses were then
utilized to produce estimates of reflection coeffi-
cient values, The results cf a Monte-Carlo simu-
lation for 100 diiferent samples of noise appear in
Tables | and 2. Table ] presents the mean value
of the estimates and Table 2 presents the estima-

tion error variance. As seen,the results are ex-
act for zero noise variance (as expected) and are
quite good for variances of 0.1 and 1. For noise
variance of 10, although the average is not poor,the
error variance indicates that the estimates are not
very reliable.

A comparison between the procedure of this pa-
Per and the standard procedures described in[1-4]
is warranted. Let us consider the noise term a(t)
to be white. Clearly, (22) indicates that the random
variables N(.) have finite variances. For this case
[n(t)white], had we performed the necessary decon-
volution and sampling required by the classical ap-
pProach to the inverse problem, the resulting N(.)
random variables would have infinite variance,clear-
ly rendering the approach meaningless.,” Of course,
""approximate'' deconvolution will eliminate this
problem but at a great sacrifice in the information
available within the seismic data. It should also be
noted that, for the narrow wavelets, no deconvolution
is required by the procedure outlined in this paper,

9. CONCLUSIONS

We have developed a procedure for extracting
reflection coefficients from noisy data which we
feel is a substantial generalization of similar pro-
cedures which have been reported in the literature.
Associated with these earlier procedures are Stan-
dard Assumptions and Steps (see Introduction, p. 1)
which include requirements that the data be noise
iree and that the observed seismic data be decon-
volved. The procedure of our paper avoids these
restrictive requirements. Furthermore, our proce-
dure totally avoids the concepts of z-transforms,
minimurmn phase, spectral factorization, forward and
reverse polynomial manipulations, etc., which ap-
pear in the literature on this subject. Finally,since
our derivation is so straightforward, it suggests a
aumber of extensions, including the following, which
are presently under study: (1) nonstandard locations
of source and sensors(e. g., both in the first layer);
(2) minimum mean-square estimation in the non-
marine environmeant; and (3) optimal prefiltering of
noisy data.
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Table |
Average of the Estimates of Each Reflection Coefficient for 100 Runse

] 0 0.1 1.0 10.0

2 1.0 1.0 1.0 1.0

fy 0.1 0.1001863 0. 1008452 0.1060553
r 0.18 0.1507439 0. 1538406 0. 1816449
£y | -0.3 -0, 3002447 -0, 3013902 -0, 3243447
4 0.28 0.2515463 0. 2578027 0.3565731
£y 0.12 0. 1198497 0.1170640 0.8808238
L 0.0% 0.04983276 0.05660696 0.2625223
. 0.20 0.2013467

0.2024367 1 0.2065443
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Figure 5. Noisy Sampled Seismogram (e?=1.0)
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Table 2

The Estimation Error Variaance for 100 Ruas
.'z 0 0.1 1.0 T 10.0
Ty 0 |o |0 0
" 0 0.01308585 : 0.1339389 1. 568616
Ty 0 0.00326087 0.0342287% 0.5127926
Ty 0 0.001491613 0.01586429 0. 2686259
L 0 0.003347942 | 0.02723132 2. 3449%0
ry 0 0.02002368 0.2376210 4623, 396
L 0 0.09040674 1.071580 789.0087
£, [} 0. 004428605 0.05160568 32. 53854
£
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